
C Pointers
An Advanced Introduction to

Unix/C Programming

John Dempsey
COMP-232 Programming Languages

California State University, Channel Islands

1

Pointer Advantages

COMP-232 Programming Languages 2

• Pointers are important!

• Pointers can reduce the size of and increase the execution speed of a program.

• Pointers allow you to allocate/deallocate memory while the program is running.

• Pointers allow you to save memory by passing only the address of an object instead of
copying all of the data contained in the object.

• There is a closer association between pointers and the underlying hardware. In many
engineering applications, low-level hardware interactions should be as close as
possible.

Pointer Disadvantages
• Pointers add complexity to the code.

• Segmentation violations will occur if pointers are not initialized.

• Using pointers set to the wrong location can cause crazy, hard to debug
problems and corrupt memory.

• Memory leaks may occur if memory is constantly being allocated, but
never freed. If left unchecked, you’ll run out of memory and program
will crash.

• It’s your responsibility to set pointers carefully and manage allocated
memory.

COMP-232 Programming Languages 3

Pointers

• When you declare a variable, like “int age;”, the compiler allocates memory for
the variable with a unique address to store the variable. You don’t know, nor
need to know, the variable’s actual address.

• The compiler associates the memory address with the variable’s name.

• When the variable is used, the program accesses the memory location in order to
read or write the variable’s value.

COMP-232 Programming Languages 4

18

int age = 18;

age

1000 1001 1002 1003 1004 1005

Pointers

COMP-232 Programming Languages 5

• An address is just a number and can be treated like any other number.

• To create a pointer, you need to declare a second variable to hold the address of
the first variable.

• Declaring age_ptr above allocates space to hold an address to any variable
defined as an integer. age_ptr has not yet been initialized, is not defined to hold
an integer data type, but is defined to point to an integer type.

18

int age = 18;
int *age_ptr; The * indicates age_ptr will hold a pointer to an integer variable.

age

1000 1001 1002 1003 1004 1005

age_ptr

?

Pointers

• To initialize age_ptr, we set age_ptr to the memory address of where age is stored, which in this
case is the address of 1004, by using:

 age_ptr = &age;

• age_ptr now points to age or is a pointer to age, because age_ptr holds the address of where age
is stored in memory.

COMP-232 Programming Languages 6

18

int age = 18;
int *age_ptr;

age

1000 1001 1002 1003 1004 1005

age_ptr

1004

Pointers
• Pointers can point to different data types, like int, float, and typedef struct,

using the following format:

 data_type *name_of_ptr;
e.g.
 int *age_ptr;

• The * is the indirection operator.

• The * indicates the variable name_of_ptr is a pointer to a data_type
variable, e.g., age_ptr can be a pointer to any variable defined as an int.

• But name_of_ptr is not a variable of type data_type.

COMP-232 Programming Languages 7

Pointer Declaration Examples

int trip, *trip_ptr; Pointer to an integer value.

double percent, *percent_ptr; Pointer to a double value.

typedef struct person_struct {

 char first_name[15];

 char last_name[25];

 float age;

} PERSON;

PERSON person, *person_ptr; Pointer to a PERSON struct.

COMP-232 Programming Languages 8

Pointers – You Must Initialize Pointers!
• Pointers are not initialized. To initialize a pointer to point to a variable, you can

use:

 pointer = &variable;
e.g.,

 trip_ptr = &trip;
 percent_ptr = &percent;
 person_ptr = &person;

• The & copies the memory address where variable is stored into the pointer
variable.

• Note how the & looks like the letter A and ampersand starts with the letter A,
which I like to think represents the Address Of.

COMP-232 Programming Languages 9

Pointers – How To Use
• Once a pointer has been defined and initialized, you can use them.

To print out the value of age, you can use:

 printf(“age = %d\n”, age); Direct Access

or

 printf(“age = %d\n”, *age_ptr); Indirect Access (or Indirection)

The address of age can be printed using:

 printf(“age_ptr = %p or &age = %p\n”, age_ptr, &age);

COMP-232 Programming Languages 10

Pointers – Program to Print Value & Address

COMP-232 Programming Languages 11

john@oho:~$ cat pointer.c
#include <stdio.h>
int main()
{
 int age = 18;
 int *age_ptr;

 age_ptr = &age;
 printf("age = %d or *age = %d\n", age, *age_ptr); // Direct Access
 printf("The address of age_ptr = %p or &age = %p\n", age_ptr, &age); // Indirect Access
}

john@oho:~$ gcc pointer.c; a.out
age = 18 or *age = 18
The address of age_ptr = 0x7fffd5dc914c or &age = 0x7fffd5dc914c
john@oho:~$ a.out
age = 18 or *age = 18
The address of age_ptr = 0x7ffffcdae50c or &age = 0x7ffffcdae50c Note: The address of age can change each time.
john@oho:~$ a.out
age = 18 or *age = 18
The address of age_ptr = 0x7fffdcf7ef4c or &age = 0x7fffdcf7ef4c

Pointers
Different data types define data of different sizes, e.g., a char is 1 byte,
a short int is 2 bytes, an int is 4 bytes, and a struct is a fixed size.

But pointers are smart! A pointer will (1) point to the first byte of the
data and (2) the compiler remembers the type of data being pointed to,
and as such, knows its size.

COMP-232 Programming Languages 12

A 12

1000 1001 1002 1003 1004 1005

char_ptr (1 byte @ 1000) short_ptr (2 bytes @ 1004)

Pointers

When using arrays, you’re actually using pointers.

To initialize numbers_ptr to the first element of the numbers array, you
can:

 int numbers[10], *numbers_ptr;

 numbers_ptr = numbers;

or

 number_ptr = &numbers[0];

COMP-232 Programming Languages 13

Pointers – Memory Addresses For Different Types
john@oho:~$ cat pointer2.c
#include <stdio.h>
int main()
{
 typedef struct person_struct {
 char first_name[10];
 char last_name[20];
 int age;
 } PERSON;

 int i;
 int integer_array[10];
 PERSON person_array[10];

 for (i=0; i<10; i++) {
 printf("Address of integer_array[%d]=%p,
person_array[%d]=%p\n",
 i, &integer_array[i], i, &person_array[i]);
 }
}

john@oho:~$ gcc pointer2.c; a.out
Address of integer_array[0]=0x7fffccf41c40, person_array[0]=0x7fffccf41c70
Address of integer_array[1]=0x7fffccf41c44, person_array[1]=0x7fffccf41c94
Address of integer_array[2]=0x7fffccf41c48, person_array[2]=0x7fffccf41cb8
Address of integer_array[3]=0x7fffccf41c4c, person_array[3]=0x7fffccf41cdc
Address of integer_array[4]=0x7fffccf41c50, person_array[4]=0x7fffccf41d00
Address of integer_array[5]=0x7fffccf41c54, person_array[5]=0x7fffccf41d24
Address of integer_array[6]=0x7fffccf41c58, person_array[6]=0x7fffccf41d48
Address of integer_array[7]=0x7fffccf41c5c, person_array[7]=0x7fffccf41d6c
Address of integer_array[8]=0x7fffccf41c60, person_array[8]=0x7fffccf41d90
Address of integer_array[9]=0x7fffccf41c64, person_array[9]=0x7fffccf41db4

The integer_array increments by 4 bytes because an int is 4 bytes.

The PERSON array is 36 bytes, but increments by 24 bytes. Why?

The PERSON struct is only 22 hex bytes in size? Why does it increment
by 24 bytes?

COMP-232 Programming Languages 14

Pointers – Addresses By Incrementing Pointers

COMP-232 Programming Languages 15

#include <stdio.h>
int main()
{
 typedef struct person_struct {
 char first_name[10];
 char last_name[20];
 int age;
 } PERSON;

 int i;
 int integer_array[10];
 int *integer_array_ptr;
 PERSON person_array[10];
 PERSON *person_array_ptr;

 integer_array_ptr = &integer_array[0];
 person_array_ptr = person_array;

 for (i=0; i<10; i++) {
 printf("Address of integer_array[%d]=%p,
person_array[%d]=%p\n",
 i, integer_array_ptr, i, person_array_ptr);
 integer_array_ptr++;
 person_array_ptr++;
 }
}

john@oho:~$ gcc pointer3.c; a.out
Address of integer_array[0]=0x7fffef2b7c10, person_array[0]=0x7fffef2b7c40
Address of integer_array[1]=0x7fffef2b7c14, person_array[1]=0x7fffef2b7c64
Address of integer_array[2]=0x7fffef2b7c18, person_array[2]=0x7fffef2b7c88
Address of integer_array[3]=0x7fffef2b7c1c, person_array[3]=0x7fffef2b7cac
Address of integer_array[4]=0x7fffef2b7c20, person_array[4]=0x7fffef2b7cd0
Address of integer_array[5]=0x7fffef2b7c24, person_array[5]=0x7fffef2b7cf4
Address of integer_array[6]=0x7fffef2b7c28, person_array[6]=0x7fffef2b7d18
Address of integer_array[7]=0x7fffef2b7c2c, person_array[7]=0x7fffef2b7d3c
Address of integer_array[8]=0x7fffef2b7c30, person_array[8]=0x7fffef2b7d60
Address of integer_array[9]=0x7fffef2b7c34, person_array[9]=0x7fffef2b7d84

integer_array_ptr increments by 4 bytes.

person_array_ptr increments by 24 bytes.

Pointers

• An array name without brackets points to the array’s first value.

• As such …

*(array) == array[0] Both point to the value held in array[0]

*(array+1) == array[1] Both point to the value held in array[1]

*(array+2) == array[2] Both point to the value held in array[2]

…

*(array+n) == array[n] Both point to the value held in array[n]

COMP-232 Programming Languages 16

Pointers – Function Calls

• There are two ways to pass arguments to a function:
1. By Value

2. By Reference

• To pass an array, you can simply provide the name of the array to the
function, which is call by reference.

• Strings are passed from one function to another using the address of
the first character, not as the whole array.

COMP-232 Programming Languages 17

Pointers – Passing An Array To Function

COMP-232 Programming Languages 18

#include <stdio.h>
#include <string.h>

typedef struct person_struct {
 char first_name[10];
 char last_name[20];
 int age;
} PERSON;

void print_integer_array(int my_int_array[], int count)
{
 int i;
 for (i=0; i<count; i++)
 printf("print_integer_array: my_int_array[%d] = %d\n",
 i, my_int_array[i]);
}

void print_person_array(PERSON my_person_array[], int count)
{
 int i;
 for (i=0; i<count; i++)
 printf("print_person_array: %d. first_name=%s, last_name=%s, age=%d\n",
 i,
 my_person_array[i].first_name,
 my_person_array[i].last_name,
 my_person_array[i].age);
}

int main()
{
 int i;
 int integer_array[10];
 PERSON person_array[10];
 PERSON *person_array_ptr;

 person_array_ptr = person_array;

 for (i=0; i<10; i++) { // Initialize integer and person arrays.
 integer_array[i] = i;
 sprintf(person_array_ptr->first_name, "John%d", i);
 sprintf(person_array_ptr->last_name, "Smith%d", i);
 person_array_ptr->age = i+10;
 *person_array_ptr++;
 }

 print_integer_array(integer_array, i);

 print_person_array(person_array, i);
}

Pointers

COMP-232 Programming Languages 19

john@oho:~$ gcc pointer_function.c; a.out
print_integer_array: my_int_array[0] = 0
print_integer_array: my_int_array[1] = 1
print_integer_array: my_int_array[2] = 2
print_integer_array: my_int_array[3] = 3
print_integer_array: my_int_array[4] = 4
print_integer_array: my_int_array[5] = 5
print_integer_array: my_int_array[6] = 6
print_integer_array: my_int_array[7] = 7
print_integer_array: my_int_array[8] = 8
print_integer_array: my_int_array[9] = 9
print_person_array: 0. first_name=John0, last_name=Smith0, age=10
print_person_array: 1. first_name=John1, last_name=Smith1, age=11
print_person_array: 2. first_name=John2, last_name=Smith2, age=12
print_person_array: 3. first_name=John3, last_name=Smith3, age=13
print_person_array: 4. first_name=John4, last_name=Smith4, age=14
print_person_array: 5. first_name=John5, last_name=Smith5, age=15
print_person_array: 6. first_name=John6, last_name=Smith6, age=16
print_person_array: 7. first_name=John7, last_name=Smith7, age=17
print_person_array: 8. first_name=John8, last_name=Smith8, age=18
print_person_array: 9. first_name=John9, last_name=Smith9, age=19

Calling Function Using Pointers

COMP-232 Programming Languages 20

john@oho:~/LAB4/CALC$ more c.c
#include <stdio.h>

void myProc(int);
void myProc2(int);

void myCaller(void (*)(int), int);

int main(void) {
 myProc(1);
 myProc2(2);

 myCaller(myProc, 3);
 myCaller(myProc2, 4);

 return 0;
}

void myCaller(void (*f)(int), int param) {
 (*f)(param); // call function *f with param
}

void myProc(int d) {
 printf("In myProc().\tParameter = %d\n", d);
}

void myProc2(int d) {
 printf("In myProc2().\tParameter = %d\n", d);
}

john@oho:~/LAB4/CALC$ gcc c.c;a.out
In myProc(). Parameter = 1
In myProc2(). Parameter = 2
In myProc(). Parameter = 3
In myProc2(). Parameter = 4

	Slide 1: C Pointers An Advanced Introduction to Unix/C Programming
	Slide 2: Pointer Advantages
	Slide 3: Pointer Disadvantages
	Slide 4: Pointers
	Slide 5: Pointers
	Slide 6: Pointers
	Slide 7: Pointers
	Slide 8: Pointer Declaration Examples
	Slide 9: Pointers – You Must Initialize Pointers!
	Slide 10: Pointers – How To Use
	Slide 11: Pointers – Program to Print Value & Address
	Slide 12: Pointers
	Slide 13: Pointers
	Slide 14: Pointers – Memory Addresses For Different Types
	Slide 15: Pointers – Addresses By Incrementing Pointers
	Slide 16: Pointers
	Slide 17: Pointers – Function Calls
	Slide 18: Pointers – Passing An Array To Function
	Slide 19: Pointers
	Slide 20: Calling Function Using Pointers

